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 MicroRNAs (miRNAs) are non-coding, endogenous RNAs that make up a vast post-

transcriptional regulatory network in cells.  Processed from primary transcripts that are 

translated from miRNA genes, mature miRNAs are usually 19-25 nucleotides long.  More than 

4000 miRNAs have been identified in the genomes of over 80 species.  Mature miRNAs are 

thought to down-regulate the translation of messenger RNAs after recognizing and binding to 

partially complementary sites in the 3’-untranslated regions (3’-UTR) of the mRNA.  MiRNAs 

have been found to be involved in the control of wide breadth of cell processes, including cell 

proliferation, death, and metabolism; therefore, their study is tremendously important for the 

understanding of cell function in eukaryotic species.1       

 The functional analysis of miRNAs relies heavily on the identification of their targeted 

genes.  However, experimental studies alone are too slow and limited in scope to be relied on 

as the only source of miRNA target identification.  In order to facilitate the investigation into 

miRNA function, numerous bioinformatic methods were developed in order to allow high-

throughput prediction of miRNA target genes.  In the last 7 years, numerous computational 

algorithms have been developed for target prediction spanning a wide range of approaches and 

techniques.2 Several of these algorithms, namely miRanda, TargetScan, Pictar, TargetBoost, 

and PITA, will be discussed and analyzed in the following paper with a focus on possible areas 

of improvement (Table 1).   
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Table 1. Popular computational algorithms for microRNA target prediction 
 
Software Name URL Reference(s) 

TargetScan, 
TargetScanS 

http://genes. mit.edu/targetscan/ Lewis et al., 2003, 2005 

miRanda http://www.microrna.org/   [or] 
http://www.ebi.ac.uk/enright-
srv/microcosm/htdocs/targets/v5/  

Enright et al., 2003  
John et al., 2004 
Kiriakidou et al., 2004 

Pictar http://pictar.bio.nyu.edu/ Grun et al., 2005 
Krek et al., 2005 
Lall et al., 2006 

TargetBoost http://demo1.interagon.com/targetboost/ Saetrom et al., 2006 

PITA http://genie.weizmann.ac.il/pubs/mir07/index.html Kertesz et al. 2007 

 

Difficulties involved in miRNA target prediction 

 The prediction of target mRNAs for miRNAs in vertebrates is a particularly difficult 

challenge because of the complexity of miRNA target recognition.  MiRNAs are short, typically 

only 19-25 nucleotides in length.  Furthermore, miRNA:mRNA duplexes in vertebrates often 

contain several mismatches, gaps and G:U base pairs in many positions, which limit the 

maximum length of contiguous sequences of perfect nucleotide matching.  This is in contrast to 

miRNA function in plants, where targets are usually recognized by perfect complementarity 

along the length of the miRNA.3   

 Specific base pairing patterns are found within miRNA:mRNA duplexes which must be 

accounted for in target recognition algorithms.  In most cases, the 5’ region of the miRNA 

perfectly complements the corresponding sequence of the target mRNA.  This “seed region” is 

usually composed of 7 to 8 bases starting from either the first or second base of the 5’ end.2 

[There is at least one report, however, where the target gene is regulated independently from 

base pairing in the seed region.]4 On the other hand, base pairing of the 3’ region of miRNA is 

usually thought to be weaker and less important, unless stronger binding here compensates for 
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weaker binding in the seed region.  Weaker binding is also usually observed at the central 

region of the miRNA:mRNA duplex, where mismatches cause bulge structures which may be 

useful for regulation of the mRNA.  An example of a typical miRNA:mRNA duplex structure is 

shown in Figure 1.2 Unfortunately, the specific and comprehensive rules controlling miRNA 

target recognition and binding have not been discovered,  

 
Figure 1.  Example of a typical miRNA:mRNA duplex.  Base pairing between let-7a miRNA 
and hbl-1 mRNA in C. elegans demonstrates that base pairing is particularly weak in the central 
region and particularly strong at the 5’ end on of the miRNA (seed region).  Figure taken from 
Watanabe, Y. et al, Methods in Enzymology, 2007, 327: 65-86.  
 
Common principles used in miRNA target prediction algorithms 

 Most miRNA target prediction algorithms use similar general principles in the 

development of their algorithm.  Most algorithms search for targets in the 3’-UTR region of 

mRNAs, where almost all miRNA-target interactions occur in vertebrates.5 Furthermore, 

algorithms usually account for the possibility of multiple target sites for more than one miRNA in 

each mRNA 3’-UTR region, though they differ in the degree in which combinations of miRNA 

target sites are incorporated into the prediction algorithm.  Some algorithms take a “seed-based” 

approach, where prediction of binding sites heavily relies heavily on almost perfect 

complementation in the seed region, while others are less dependent on perfect 

complementarity within this region.3      

 Most miRNA target prediction algorithms, the likelihood that a particular miRNA:mRNA 

duplex will form in vivo is estimated by analyzing the thermodynamic properties of the duplex 

structure.  The Vienna package is the most commonly used software tool for the estimation of 

free energy and RNA secondary structure.6  The various algorithms set free energy thresholds 

to evaluate possible miRNA-target interactions.   MiRNA target prediction algorithms often make 
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use of the RNAfold program, which predicts minimum energy secondary structures and pair 

probabilities and the RNAduplex program, which predicts possible hybridization sites between 

two RNA sequences.  The software can be accessed at http://www.tbi.univie.ac.at/RNA/.7   

 The degree of sequence conservation is another criterion commonly used to filter 

possible miRNA targets.  Most target prediction algorithms identify orthologous 3’-UTR 

sequences and check whether the miRNA-target interaction is conserved between closely 

related species.2 If miRNAs are conserved in orthologous species, their targets are also 

expected to be conserved, therefore allowing for a reduction in false positive predictions and a 

useful filter to use since perfect miRNA binding rules are as-of-yet unknown.   

 Many algorithms depend on an initial input of a miRNA or miRNAs to be queried and a 

set of genes to test for targets.  Researchers draw information for their analysis from useful 

databases.  The miRNA registry, or miRBase, is a widely used database of miRNA 

sequences.8,9  A web interface (http://microrna.sanger.ac.uk/) allows users to search and 

browse for miRNAs in multiple species and allows for the downloading of sequence information.  

Sequences of mRNAs, particularly of their 3’-UTR, are often obtained from the Ensembl 

database, which allows users to generate the 3’-UTR sequences for all transcripts of all genes 

from each genome.10 

 

miRanda 

 The miRanda algorithm, introduced in 2003, was one of the first miRNA target prediction 

algorithms to be developed and is now one of the most heavily used.11 It is now used for target 

prediction by multiple interfaces accessible to researchers, including http://microRNA.org12 and 

MicroCosm Targets, accessible at http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/ 

v5/.  The algorithm ranks the likelihood of each gene to be a miRNA target and the likelihood of 

each miRNA to target a gene.  Overall, the algorithm relies on a stepwise progression through 
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target prediction, free-energy calculation to estimate the thermodynamics of the possible 

interactions, and evolutionary conservation.   

 The algorithm first depends on the retrieval of miRNA and 3’-UTR sequences.  Given 

this set, the target prediction component of the algorithm consists of using dynamic 

programming to search for maximal local complementarity alignments between the mature 

microRNA sequence and all possible positions in each gene 3’-UTR.  A score of +5 is assigned 

for G:C and A:T pairs, +2 for G:U wobble pairs, and -3 for all other nucleotide pairs.  The 

opening of a gap has a penalty of -8 while gap elongation costs -2.  The gap-elongation 

parameter was only used if the cost of a gap at a position is less than the cost of a mismatched 

base pair.  The miRanda algorithm recognizes the importance of the seed region by multiplying 

the complementarity scores (positive and negative values) at the first eleven positions, from the 

miRNA 5’ end, by a scaling factor of 2.  The value of the scaling factor is an adjustable 

parameter that can be optimized as new experimental information is discovered about the seed 

region.  Furthermore, four empirical rules are applied in order to ensure that the proposed 

miRNA:mRNA duplex follows experimentally determined patterns: no mismatches at positions 2 

to 4 (counting from the 5’ end); fewer than five mismatches between positions 3-12; at least one 

mismatch between positions 9 and L-5 (L is the total alignment length); and fewer than two 

mismatches in the last five positions of the alignment.  The dynamic programming algorithm 

thus optimizes the complementarity score between a miRNA sequence and mRNA sequence 

summed over all aligned positions and creates a ranking of all non-overlapping hybridization 

alignments in decreasing order of score down to some cut-off value (cutoff typically 80 or 90).  

The key extension of the miRanda algorithm over the Smith-Waterman sequence alignment 

algorithm is the addition of weighted scores for certain positions in the alignment.11-13   

 To estimate the stability of the predicted miRNA:mRNA duplex that would be created 

from each alignment, the miRanda algorithm uses folding routines from the Vienna package.  

The free energy of the duplex is estimated and checked against a threshold value.  Previous 
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implementations of this algorithm have used G<-17 kcal/mol or G<0-14 kcal/mol as cut-off 

values.11-13   

 Finally, the miRanda algorithm searches for conservation of the target site between 

orthologous species.  The species used in this analysis obviously depends on the reference 

species.  For example, the initial prediction of targets in the human genome consisted of a 

search for conservation between human, mouse, and rat.13 The alignments of target sites are 

generated transitively via a shared homologous miRNA (i.e. UTR target in human -> miRNA -> 

UTR target in mouse).  The positions of pairs of target sites in to species must fall within ±10 

residues in the aligned 3’ UTRs.  The sequence identity between conserved target sites must 

also meet a certain threshold (≥90% used for analysis in humans13).   

 After passing the conservation filter, predicted target sites for each miRNA are sorted 

according to alignment score primarily and free energy secondarily.  Overall, however, the 

miRanda algorithm is a very popular tool for miRNA target prediction.  It was used initially to 

predict miRNA target genes in D. melanogaster, correctly identifying 9 of 10 published miRNA-

target interactions, with a false positive rate of 24%.11  However, this algorithm does have flaws 

that can be improved upon.  If multiple miRNAs target the same site on a transcript, only the 

highest scoring, lowest energy miRNA is reported for that site.  This parameter is a possible 

source of false negatives because different miRNAs are expressed at different times in cell 

development.1 It is possible that multiple miRNAs can bind to overlapping sites, but because 

they are never expressed at the same time in the cell, they don’t usually compete for the 

binding.  Furthermore, Ioshikhes et al. argues for less reliance on Smith-Waterman alignment in 

algorithms such as miRanda.14 The Smith-Waterman alignment was originally designed for 

comparing evolutionarily related sequences and miRNAs and their mRNA targets do not fall into 

this category.  A better alignment algorithm that is specifically designed for miRNA/mRNA 

sequence comparison will improve the miRanda algorithm.  Finally, the values and penalties 
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assigned throughout the algorithm are arbitrary and should be modified as greater knowledge 

about the biology of miRNA binding accumulates. 

 

TargetScan/TargetScanS 

 The TargetScan algorithm places a greater emphasis on the seed region than miRanda 

but follows many of the same general principles.15 To predict targets in a queried animal, the 

algorithm begins with a miRNA that is conserved in multiple organisms and a set of orthologous 

3’-UTR sequences from the genes in these organisms.  TargetScan then searches the UTR 

regions of the queried species for segments of perfect Watson-Crick complementarity (G:C or 

A:U) to bases 2 to 8 of the miRNA, numbered from the 5’ end (termed the “seed match”).  The 

algorithm then extends the seed match with additional base pairs to the miRNA as far as 

possible in each direction, allowing G:U wobble pairs, but stopping at mismatches.  After 

stopping, the algorithm uses the RNAfold program of the Vienna package to optimize base 

pairing of the remaining 3’ portion of the miRNA to the 35 bases of the UTR after the seed 

match.  The resulting predicted miRNA-target interaction is then assigned a folding free 

energy.15 

A final score Z is used to rank the likelihood that the UTR is a target for the miRNA: 

, where n is the number of seed matches in the UTR, GK is the free energy of the 

miRNA:mRNA duplex for the kth target site.  T is a parameter that influences the relative 

weighting of UTRs with fewer high-affinity sites to those with larger numbers of low-affinity sites.  

The value of T was determined through testing to be optimized at a value of 10 (for an organism 

set involving human, mouse, and rat). The UTRs in the organism is sorted by Z score and then 

assigned a rank Ri.  This process is repeated for the set of UTRs in each organism in the set.  

The final list of predicted targets includes those where both Zi ≥ ZC and Ri ≤ RC for an 

orthologous UTR sequence in each organism in the set.  Like T, the ZC and RC cut-off values 



 8 

are determined through optimization and have previously been set as 4.5 and 350, respectively.  

The TargetScan Algorithm thus relies heavily on complementarity in the seed region, free 

energy calculations, and conservation in orthologous UTRs.15   

 Two years after the initial algorithm was created, changes were made to create the 

TargetScanS algorithm.16 Additional whole genomes (chicken and dog) were added to the 

conservation set, which reduced the estimated number of false-positive predictions and allowed 

for the total elimination of ZC and RC cut-offs in favor of dependence almost solely on seed 

matches.  The conservation criterion was also extended to require that the conserved seed 

matches be at conserved positions within the UTRs, like the miRanda algorithm.  Furthermore, 

the seed region was reduced by one base to require perfect complementarity only between 

nucleotides 2 through 7.  Finally, since experimental evidence showed bias towards the 

presence of certain nucleotides in key positions, the TargetScanS algorithm predicts targets that 

have a conserved 6-nt seed match flanked by either a Watson-Crick match at position 8 of the 

miRNA or an adenosine immediately downstream of the seed region in the target sequence.16   

 Initial testing of the TargetScan algorithm resulted in experimental validation of 11 out of 

15 predicted targets in mammalian cells.  The fraction of false positive results was estimated at 

31% for targets identified in human, mouse, and rat.  However, out of over 5300 human genes 

predicted as potential targets of miRNAs, a significant number of genes are correctly identified 

as miRNA targets to be used as candidates for further experimental validation.15 The 

advantages of TargetScanS include reduced false positive predictions because of the heavy 

emphasis on conservation.16 However, these algorithms may be limited in its applicability since 

predictions are restricted to miRNAs conserved between the species with less than one 

substitution.  MiRNAs that are conserved but may have additional substitutions (perhaps in non-

essential locations) cannot be tested.  Furthermore, both algorithms are heavily dependent on 

perfect complementarity in the seed region, therefore missing targets with G:U wobble pairs in 

the seed region.2   
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PicTar 

 The advantage of the PicTar (probabilistic identification of combinations of target sites) 

algorithm is its recognition that the degree of translational repression may increase 

exponentially with the number of miRNA binding sites in the 3’-UTR, therefore it is important to 

search for combinations of miRNA binding sites for sets of co-expressed miRNAs.17 PicTar 

depends on the input of a fixed search set of miRNAs and multiple alignments of orthologous 

nucleate sequences (3’-UTRs usually) and outputs scores that rank genes by their likelihood of 

being a common target of subsets of the miRNA search set and probabilities for the predicted 

binding sites in each UTR.  To accomplish this, PicTar uses hidden Markov models to model the 

3’-UTR of a gene where the HMM states are bindings sites of each of the miRNAs from the set 

and the background.   

The miRNA binding sites are represented by 7-8 nucleotide long “nuclei”, (mRNA 

stretches Watson-Crick base paired from the first or second position from the 5’ end of the 

miRNA).  Insertions or mutations in the mRNA sequence of a perfect nucleus is allowed if the 

free energy of binding does not increase and does not contain G:U wobble pairs.  The free 

energy of the miRNA:mRNA duplex must also be below a cutoff value (33% of the optimal free 

energy of the entire mature miRNA binding to a perfectly complementary target site for sites 

with perfect nuclei; 66% of the optimal free energy for sites with imperfect nuclei).  Nuclei that 

survive this filter are assigned a probability p to be a binding site for the miRNA (p usually 

assigned to be ≈0.8 for perfect nuclei and (1-p)/(# of imperfect nuclei) for imperfect nuclei).17 

The PicTar program first looks for the conserved 3’ UTR segments containing minimal numbers 

of perfect and imperfect matches for a given miRNA set specified by the user.  These segments 

are used to derive a HMM-based score for a given UTR to be targeted by the given miRNA.14 

PicTar was initially used to predict miRNA targets in vertebrates.  Testing showed that it 

had the ability to recover published miRNA targets and has a false positive rate around 30%.  

Advantages of this algorithm include ability to output probabilities of binding and its use of 
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combinatorial methods to account for binding by multiple miRNAs.  However, it still relies on the 

same sequence alignment and conservation analysis done in other algorithms.2 

 

TargetBoost 

 In contrast to the algorithms described previously, TargetBoost takes a machine-learning 

approach to miRNA target prediction by combining genetic programming with boosting.18  The 

algorithm essentially tries to learn the hidden rules of miRNA-target site hybridization without 

relying on criteria based on sequence complementarity, thermodynamic stability, or evolutionary 

conservation.  Given a miRNA and a potential target site, TargetBoost reports a score that 

represents the likelihood of the site being targeted by the miRNA.   

 The TargetBoost algorithm relies on training from a set of known miRNA targets (and 

negative controls).  From this set, the program creates a sequence-based classifier that 

recognizes the positive sequences.  The classifier is a sum of several differentially weighted 

“template queries”, which are general expressions that describe the common properties of 

miRNA target sites.  These template queries are translated into queries that are specific for 

each miRNA in the search.  The individual template queries are developed using a combination 

of genetic programming19 to evolve the individual queries from a population of candidate 

patterns and boosting20 to guide the search by adjusting the importance of each sequence in the 

training set.  The boosting algorithm then assigns weights to the template queries based on their 

individual performance in the training set.  The template queries are then used to search a set of 

3’-UTR sequences for binding sites to a desired miRNA.18   

 This algorithm thus develops a set of rules based on a training set, and applies those 

rules in the search of new miRNA binding sites.  When the algorithm was tested using 10-fold 

and leave-one-miRNA-out cross-validation (use 9 miRNA training sets and check predictions for 

the 10th one), TargetBoost was found to have a high ROC50-score, which is the area under the 

ROC curve until 50 false positives are found, of 0.0025, performing better than other prediction 
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algorithms RNAhybrid and Nucleus (both not described here).  TargetBoost also confirmed the 

tendency of perfect matching in the 5’ end of the miRNA.18 

A potential flaw of TargetBoost is that it treats G:U wobbles as normal mismatches, and 

thus would not find potential target sites with a high number of G:U wobbles.  Indeed, 

TargetBoost did not recognize the miR-92a target in tailless and the miR-210 target in hairy that 

have been validated in D. melanogaster.18 However, because TargetBoost relies on more than 

thermodynamic stability and binding in the seed region through its development of specific 

classifiers, better classification and prediction can be achieved.  The programming and boosting 

algorithms may be able to identify additional patterns in miRNA-target binding that are not 

frequently reported and thus not incorporated into other prediction algorithms.  Finally, though 

the initial applications of TargetBoost did not do so, additional filters such as requiring 

conservation of the target sites or the presence of multiple target sites in the 3’-UTR can be 

added to reduce the number of false positive predictions.    

 

PITA 

 The PITA algorithm was one of the first to incorporate target accessibility into miRNA 

target site prediction.19 Because there is an energetic cost to freeing base-pairing interactions 

within mRNA secondary structure, the creators of this algorithm believed that secondary 

structure thus contributes to target recognition and is considered in the analysis.  The PITA 

algorithm involves first scanning the 3’-UTR for perfect complementarity to miRNA seed regions 

(at least seven bases long) , and then applies a thermodynamic model to each such putative 

site, finally combining sites for the same miRNA to obtain a total interaction for the miRNA and 

UTR.  The search can be limited to a set of evolutionary conserved miRNAs and mRNAs if 

desired.   

 The thermodynamic model scores microRNA-target interactions by an energy score 

ΔΔG, which is equal to the difference between the energy gained by binding of the miRNA to 
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the target, ΔGduplex, and the energy required to make the target region accessible for miRNA 

binding, ΔGopen.  To compute the ΔGduplex value, the RNAduplex program in the Vienna Package 

is modified to predict hybridization structure given explicit seed pairings.  The program then 

computes the binding free energy of the complying structures and selects the minimum free 

energy structure as ΔGduplex.  ΔGopen is calculated as the difference between the free energy of 

the ensemble of all secondary structures of the target region and the free energy of all target-

region structures in which the target nucleotides (and additional nucleotides upstream and 

downstream in the case of flanking) are required to be unpaired.  Using dynamic programming, 

the free energies of these two ensembles are computed using RNAFold, the Vienna package 

program that predicts minimum energy secondary structures, by iterating over all possible 

structures and summing their free energies.  RNAFold is given the area of the target and 70 

additional nucleotides upstream and downstream to analyze for secondary structure (distances 

greater than 70 nucleotides away have low probabilities of structural interactions).  Therefore, 

this value estimates the energy required to unpair the nucleotides that will be involved in 

recognition and binding of the miRNA.  In order to integrate multiple sites with ΔΔG scores for a 

single miRNA on the same UTR, the algorithm computes the overall miRNA-UTR interaction 

score T using the formula: .19   

 The score T is calculated to represent the configuration that only one of the sites is 

bound at any given time.  The algorithm thus does not account for the possibility in which two or 

more sites can be bound simultaneously.19 Such a calculation would require knowledge of the 

free concentration of the miRNA, which is unknown as-of-yet, but would vastly improve the 

biological relevance of the search.  However, development of the PITA algorithm did improve 

the standard thermodynamic analysis conducted in previous target prediction algorithms.        
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Comparing the available algorithms for miRNA target prediction 

 Six different algorithms were presented here that span the majority of computational 

approaches used for miRNA target predictions.  MiRanda uses weighted target prediction 

scores, thermodynamics, and conservation analysis.  TargetScan relies on perfectly-matched 

seed regions along with thermodynamics and conservation analysis, while TargetScanS relies 

on seed region complementarity and high conservation.  PicTar uses combinatorial methods to 

predict miRNA binding in the presence and activity of other miRNAs.  TargetBoost takes a 

machine-learning approach to generate miRNA-target interaction rules used to predict further 

targets.  The PITA algorithm takes into account target site accessibility by factoring mRNA 

secondary structure before miRNA binding.  Each algorithm has its own advantages and 

limitations, therefore researchers can pick the algorithm that best fits their needs. 

 A quantitative comparison of these algorithms is difficult to conduct because no study 

has been down using all these algorithms for the prediction of the same targets.  However some 

qualitative comparisons can be made due to their general approaches.  miRanda, TargetScan, 

PicTar and PITA are all limited by their reliance on currently established miRNA recognition and 

binding rules.  While the free energy of the miRNA-duplex is taken into account, emphasis is 

profoundly placed on seed region matches.  Evolutionary conservation is used as a replacement 

for more detailed recognition and binding rules that are not yet discovered.  More subtle 

requirements (or biases) for miRNA-target interactions that are not utilized for prediction yet (or 

perhaps not even identified) can vastly improve the specificity of miRNA target prediction.  

Machine learning approaches such as TargetBoost have an advantage in this area because 

they will continue to discover and incorporate these subtle rules as more and more miRNA-

interactions are validated and added to training sets.  However, there is danger that the use of 

computer-calculated rules will limit the sensitivity of predictions.  MiRanda, which does not rely 

as heavily on seed matches as TargetScan, PicTar, and PITA, in favor of user-defined cut-off 

scores, may provide the greatest number of predictions for miRNA targets.  This is useful for 
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studies desiring high sensitivity rates.  Groups studying the binding and function of co-

expressed miRNAs may benefit from PicTar’s combinatorial model, however, while TargetScan 

and PITA may be preferred for other reasons.   

  

Limitations to current algorithms and suggestions for improvement 

 While the algorithms presented here and elsewhere are useful for miRNA target 

prediction and have been embraced by the scientific community, improvements can still be 

made to more precisely predict targets with less false positive and false negative results. It is 

interesting to consider ways in which the current algorithms can learn from each other.  For 

example, machine-learning approaches like TargetBoost could be improved through the 

addition of checkpoints testing target site availability as used in the PITA algorithm.  A 

combination of the miRanda and PITA algorithms could result in less reliance on seed matches 

but greater knowledge of target availability.  The advantages of multiple algorithms can be 

combined in order to produce more accurate target predictions.  Greater cooperation and 

communication within the bioinformatics research groups tackling this problem may improve 

target prediction in the future.    

 Currently, the application of computational miRNA prediction algorithms has mainly 

involved searching for targets with the 3’-UTR.  However, it has been shown that target 

sequences inserted in the coding or 5’-UTR regions can also be functional.22-23 A greater 

emphasis should be placed on searching the entire gene (5’-UTR, introns, exons, and 3’-UTR) 

for potential miRNA targets in order to reduce the number of false negatives in all prediction 

algorithms.  Furthermore, the algorithms that make use of evolutionary conservation should be 

relaxed in order to better fit the needs of more research projects.  If the incorporation of 

conservation analysis was made optional, prediction algorithms can be used on miRNAs and 

genes specific to one species, or for those whose homologues have not yet been identified in 

other species.   
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 Ultimately, our knowledge of miRNA recognition and binding patterns remains 

incomplete.  Computational methods are thus limited in their accuracy and scope until increased 

research in the field is conducted.  It has recently been reported that nucleotides in the loop 

region of precursor miRNAs affect miRNA activity (and thus, perhaps affects binding), which 

questions the current dependence on mature miRNA sequence.24  If this finding is further 

validated, all the target prediction algorithms currently used will need to be updated.  At the 

moment, however, the algorithms in place are effectively predicting new candidate miRNA-

target interactions for use in defining the roles and functions of miRNAs in organisms.   
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